75 research outputs found

    High-efficiency high voltage hybrid charge pump design with an improved chip area

    Get PDF
    A hybrid charge pump was developed in a 0.13- μm\mu \text{m} Bipolar-CMOS-DMOS (BCD) process which utilised high drain-source voltage MOS devices and low-voltage integrated metal-insulator-metal (MIM) capacitors. The design consisted of a zero-reversion loss cross-coupled stage and a new self-biased serial-parallel charge pump design. The latter has been shown to have an area reduction of 60% in comparison to a Schottky diode-based Dickson charge pump operating at the same frequency. Post-layout simulations were carried out which demonstrated a peak efficiency of 38% at the output voltage of 18.5 V; the maximum specified output voltage of 27 V was also achieved. A standalone serial-parallel charge pump was shown to have a better transient response and a flatter efficiency curve; these are preferable for time-sensitive applications with a requirement of a broader range of output currents. These findings have significant implications for reducing the total area of implantable high-voltage devices without sacrificing charge pump efficiency or maximum output voltage

    Analysis of Passive Charge Balancing for Safe Current-Mode Neural Stimulation

    Get PDF
    Charge balancing has been often considered as one of the most critical requirement for neural stimulation circuits. Over the years several solutions have been proposed to precisely balance the charge transferred to the tissue during anodic and cathodic phases. Elaborate dynamic current sources/sinks with improved matching, and feedback loops have been proposed with a penalty on circuit complexity, area or power consumption. Here we review the dominant assumptions in safe stimulation protocols, and derive mathematical models to determine the effectiveness of passive charge balancing in a typical application scenario

    10-Bit 200 kHz/8-Channel Incremental ADC for Biosensor Applications

    Get PDF

    Role of ICT Innovation in Perpetuating the Myth of Techno-Solutionism

    Full text link
    Innovation in Information and Communication Technology has become one of the key economic drivers of our technology dependent world. In popular notion, the tech industry or how ICT is often known has become synonymous to all technologies that drive modernity. Digital technologies have become so pervasive that it is hard to imagine new technology developments that are not totally or partially influenced by ICT innovations. Furthermore, the pace of innovation in ICT sector over the last few decades has been unprecedented in human history. In this paper we argue that, not only ICT had a tremendous impact on the way we communicate and produce but this innovation paradigm has crucially shaped collective expectations and imagination about what technology more broadly can actually deliver. These expectations have often crystalised into a widespread acceptance, among general public and policy makers, of technosolutionism. This is a belief that technology not restricted to ICT alone can solve all problems humanity is facing from poverty and inequality to ecosystem loss and climate change. In this paper we show the many impacts of relentless ICT innovation. The spectacular advances in this sector, coupled with corporate power that benefits from them have facilitated the uptake by governments and industries of an uncritical narrative of techno-optimist that neglects the complexity of the wicked problems that affect the present and future of humanity

    Electrically Small Antenna For RFID-based Implantable Medical Sensor

    Get PDF

    Use of a 3-D Wireless Power Transfer Technique as a Method for Capsule Localization

    Get PDF
    Capsule endoscopy has been heralded as a technological milestone in the diagnosis and therapeutics of gastrointestinal (GI) pathologies. The location and position of the capsule within the GI tract are important information for subsequent surgical intervention or local drug delivery. Accurate information of capsule location is therefore required during endoscopy. Although radio frequency (RF)-based, magnetic tracking and video localization have been investigated in the past, the complexity of those systems and potential inaccuracy in the localization data necessitate the scope for further research. This article proposes the dual use of a wireless power transfer (WPT) configuration as a method to enable the determination of the location of an endoscopic capsule. Measurements conducted on a homogeneous agar-based liquid phantom predict a maximum error of 12% between the calculated and measured trajectories of the capsule in a working volume of 100 mm ×100\times 100 mm ×100\times 100 mm

    Communication channel analysis and real time compressed sensing for high density neural recording devices

    Get PDF
    Next generation neural recording and Brain- Machine Interface (BMI) devices call for high density or distributed systems with more than 1000 recording sites. As the recording site density grows, the device generates data on the scale of several hundred megabits per second (Mbps). Transmitting such large amounts of data induces significant power consumption and heat dissipation for the implanted electronics. Facing these constraints, efficient on-chip compression techniques become essential to the reduction of implanted systems power consumption. This paper analyzes the communication channel constraints for high density neural recording devices. This paper then quantifies the improvement on communication channel using efficient on-chip compression methods. Finally, This paper describes a Compressed Sensing (CS) based system that can reduce the data rate by > 10x times while using power on the order of a few hundred nW per recording channel

    Low Noise and High Photodetection Probability SPAD in 180 nm Standard CMOS Technology

    Get PDF
    A square shaped, low noise and high photo-response single photon avalanche diode suitable for circuit integration, implemented in a standard CMOS 180 nm high voltage technology, is presented. In this work, a p+ to shallow n-well junction was engineered with a very smooth electric field profile guard ring to attain a photo detection probability peak higher than 50% with a median dark count rate lower than 2 Hz/μm2 when operated at an excess bias of 4 V. The reported timing jitter full width at half maximum is below 300 ps for 640 nm laser pulses

    Single photon kilohertz frame rate imaging of neural activity

    Get PDF
    Establishing the biological basis of cognition and its disorders will require high precision spatiotemporal measurements of neural activity. Recently developed genetically encoded voltage indicators (GEVIs) report both spiking and subthreshold activity of identified neurons. However, maximally capitalizing on the potential of GEVIs will require imaging at millisecond time scales, which remains challenging with standard camera systems. Here, application of single photon avalanche diode (SPAD) sensors is reported to image neural activity at kilohertz frame rates. SPADs are electronic devices that when activated by a single photon cause an avalanche of electrons and a large electric current. An array of SPAD sensors is used to image individual neurons expressing the GEVI Voltron‐JF525‐HTL. It is shown that subthreshold and spiking activity can be resolved with shot noise limited signals at frame rates of up to 10 kHz. SPAD imaging is able to reveal millisecond scale synchronization of neural activity in an ex vivo seizure model. SPAD sensors may have widespread applications for investigation of millisecond timescale neural dynamics

    Wireless Battery-Free Body Temperature Sensing Device for Key Workers

    Get PDF
    corecore